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Q.1 Construct Mealy and Moore machines for the following: 

For the input from *, where  = {0, 1, 2} print the residue-modulo-5 of the input treated as a 

ternary (base 3 with digits 0, 1, and 2) number. 

 

Solution: 

Refer to the example 2.21 from the book. 

 

Q.2 Discuss the relative powers of NFA and DFA. 

 

Solution: 

NFA (Non-deterministic Finite Automata) and DFA (Deterministic Finite Automata) are equivalent to 

each other. Each NFA can be converted to its equivalent DFA, which means, NFA and DFA are of the 

same power in terms of acceptance of language and state transitions depending upon given input over 

language alphabets. 

 

We can show equivalence relation in NFA and DFA by drawing NFA and its equivalent DFA as follows. 

 

 

Above NFA shows two transitions for an input symbol 0 from state q0. This NFA only accepts strings 

“00” and “01”, which means language accepted by the NFA can be given as, 

L1 = {00, 01} 

Hence state q1 can be removed from the equivalent DFA as it is not reaching final state q2 on any 

symbol. Equivalent DFA accepts same language, 

L2 = {00, 01} 

 

As L1 = L2, NFA and DFA drawn above are equivalent and accept the same language. Therefore their 

power is same. 
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Q.3 Write the machine function and the state transition function for a binary adder. Support your 

answer with a transition diagram. 

 

Solution: 

Refer to the example 2.1 from the book.  

 

Q.4 Prove the following: 

“Corresponding to every transition graph, there need not exist an FSM, but the converse is always 

true”. 

 

Solution: 

Refer to the section 2.3.6, theorem 2.1. 

 

Q.5 Define and give suitable examples for a transition graph. 

 

Solution: 

Transition Graph (or Transition Diagram) is a directed graph whose vertices corresponds to the states of 

the Finite State Machine and directed edges corresponds to the transitions from one state to another state 

on the acceptance of input symbol which is written above the directed edge. Refer section 2.3.1 for 

details. Refer to the solution of question Q.3 above for the example of transition graph. 

 

Q.6 Construct a Mealy machine that accepts the strings from (0 + 1)* and produces the output as 

indicated below: 

End of string Output 

101 x 

110 y 

Otherwise z 

 

Solution: 

Refer to the example 2.20 from the book. 

 

Q.7 Explain whether a language of palindromes is accepted by an FSM. Justify. 

 

Solution: 

Refer to the section 2.14. 
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Q.8 Describe the following: 

 (a) State equivalence 

 (b) FSM equivalence 

 

Solution: 

(a) State equivalence – Refer to the section 2.6.2.1. 

(b) FSM equivalence – Refer to the section 2.12. 

 

Q.9 Write a short note on Mealy and Moore machines. 

 

Solution: 

Refer to the section 2.10. 

 

Q.10 Explain with an example, the process of converting a Mealy machine to its corresponding Moore 

machine. 

 

Solution: 

Refer to the section 2.11.2. 

 

Q.11 Write a short note on the properties and limitations of FSM. 

   

Solution: 

Refer to the section 2.14. 

  

Q.12 Compare Moore and Mealy machines. 

 

Solution: 

Refer to the section 2.10. 

 

Q.13 Design an FSM to check divisibility by three, where  = {0, 1, ..., 9}. 

 

Solution: 

Refer to the example 2.2 from the book. 
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Q.14 What are finite automata? Construct the minimum state automata equivalent to following state 

transition diagram: 

 

 

 

 

 

 

 

Figure 2.51: Example automata 

 

Solution: 

We can see from the figure that the states q4, q5, q6 and q7 are not reachable from the initial state, as there 

is no path from the initial state that reaches to these states. We can easily remove these 4 states and their 

transitions as they do not take part in any string acceptance. 

Hence, we are left with the reduced FA as shown in the diagram below, 

 

 

Let us now draw the STF form the above TG. The STF is, 

 

Q \  a b 

q0 q1 q0 

q1 q0 q2 

q2 q3 q1 

*q3 q3 q0 

 

As we can see, there are no more states that we can reduce and hence, it is the answer. 
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Q.15 Construct NFA without -transitions for the following NFA with -transitions. 

 

 

 

 

 

Figure 2.52: Example NFA with -transitions 

 

Solution: 

Let us first find the -closure of all the states. Let us assume that q0 is the initial state of the NFA given. 

-closure (q0) = {q0, q1} 

-closure (q1) = {q1} 

-closure (q2) = {q2, q3, q5} 

 -closure (q4) = {q4, q3, q5} 

 -closure (q3) = {q3, q5} 

 -closure (q5) = {q5} 

 -closure (q6) = {q6} 

 -closure (q7) = {q7} 

 

q7 is the only final state even for the NFA without -transitions. 

 

Now let us find transition function ' for the resultant NFA. This can be obtained by using rule:  

 ' (q, a) = -closure ((^ (q, ), a)) 

 

Therefore, 

 ' (q0, a) = -closure ((^ (q0, ), a)) 

  = -closure (({q0, q1}, a)) 

  = -closure ((q0, a) U (q1, a)) 

  = -closure (Uq2

  -closure (q2) 

  = {q2, q3, q5} 

 

We can obtain all the other transitions. The transition table for the resultant NFA is, 
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Q\∑ a b 

q0 {q2, q3, q5} {q4, q3, q5} 

q1 {q2, q3, q5} {q4, q3, q5} 

q2 {q6}  

q3 {q6}  

q4 {q6}  

q5 {q6}  

q6  {q7}

* q7   

 

 

Q.16 Design an FSM that reads strings made up of letters in the word ‘CHARIOT’ and recognizes 

those strings that contain the word ‘CAT' as a substring. 

 

Solution: 

Refer to the example 2.5 from the book. 

 

Q.17 Construct a Moore machine equivalent to the Mealy machine represented by the following TG: 

 

Figure 2.53: Example Mealy machine 

 

Solution: 

Let us draw state function and machine function for the given Mealy machine. 
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Q \  0 1 

q1 q2 q3 

q2 q2 q3 

q3 q2 q3 

 

 : Q x   Q (State function)   : Q x    (Machine function) 

 

According to the rule of conversion, the resultant Moore machine consists of states:  

Q' = Q x  = {[q1, z1], [q1, z2], [q2, z1], [q2, z2], [q3, z1], [q3, z2]} 

Also ' and ' can be found as follows:  

a) '([q1, z1], 0)  = [ (q1, 0),   (q1, 0)] 

= [q2, z1] 

'([q1, z1], 1)  = [ (q1, 1),   (q1, 1)] 

= [q3, z2] 

 '([q1, z1]) = z1 

b) '([q1, z2], 0)  = [ (q1, 0),   (q1, 0)] 

= [q2, z1] 

'([q1, z2], 1)  = [ (q1, 1),   (q1, 1)] 

= [q3, z2] 

 '([q1, z2]) = z2 

c) '([q2, z1], 0)  = [ (q2, 0),   (q2, 0)] 

= [q2, z2] 

'([q2, z1], 1)  = [ (q2, 1),   (q2, 1)] 

= [q3, z1] 

 '([q2, z1]) = z1 

d) '([q2, z2], 0)  = [ (q2, 0),   (q2, 0)] 

= [q2, z2] 

'([q2, z2], 1)  = [ (q2, 1),   (q2, 1)] 

= [q3, z1] 

 '([q2, z2]) = z2 

Q \  0 1 

q1 z1 z2 

q2 z2 z1 

q3 z1 z2 
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e) '([q3, z1], 0)  = [ (q3, 0),   (q3, 0)] 

= [q2, z1] 

'([q3, z1], 1)  = [ (q3, 1),   (q3, 1)] 

= [q3, z2] 

 '([q3, z1]) = z1 

f) '([q3, z2], 0)  = [ (q3, 0),   (q3, 0)] 

= [q2, z1] 

'([q3, z2], 1)  = [ (q3, 1),   (q3, 1)] 

= [q3, z2] 

 '([q3, z2]) = z2 

 

Q.18 Consider the DFA as shown in the Fig. 2.54. Obtain the minimum state DFA. 

 

 

 

 

 

 

 

Figure 2.54: Example DFA 

 

Solution: 

Refer to the section 2.13. 

 

Q.19 Consider the Moore machine described by the transition table given below. Construct the 

corresponding Mealy Machine. 

Current  

state 

Next state  

 

Output  a = 0 a = 1 

 q1 q1 q2 0 

q2 q1 q3 0 

q3 q1 q3 1 
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Solution: 

Refer to the example 2.23 from the book. 

 

Q.20 Construct a DFA equivalent to the NFA: ({p, q, r, s}, {0, 1}, , p, {q, s}), where ‘’ is given by: 

 

 

           

 

 

Solution: 

Refer to the example 2.10 from the book. 

 

Q.21 Write and explain all the steps required for the conversion of an NFA to a DFA using a suitable 

example. 

 

Solution: 

Refer to the section 2.6. 

 

Q.22 Convert the following Mealy machine to a Moore machine. 

 

 

Figure 2.55: Example Mealy machine 

 

Solution: 

Let us draw state function and machine function for the given Mealy machine.  

Q \  a b 

S0 S1 S0 

S1 S1 S0 

 

 : Q x   Q (State function)    : Q x    (Machine function) 

 

According to the rule of conversion, the resultant Moore machine consists of states:  

Q' = Q x  = {[S0, 0], [S0, 1], [S1, 0], [S1, 1]} 

Q \  a b 

S0 0 0 

S1 1 1 
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Also ' and ' can be found as follows:  

a) '([S0, 0], a)  = [ (S0, a),   (S0, a)] 

= [S1, 0] 

'([S0, 0], b)  =  [ (S0, b),   (S0, b)] 

= [S0, 0] 

 '([S0, 0]) = 0 

b) '([S0, 1], a)  =  [ (S0, a),   (S0, a)] 

= [S1, 0] 

'([S0, 1], b)  =  [ (S0, b),   (S0, b)] 

= [S0, 0] 

 '([S0, 1]) = 1 

c) '([S1, 0], a)  =  [ (S1, a),   (S1, a)] 

= [S1, 1] 

'([S1, 0], b)  =  [ (S1, b),   (S1, b)] 

= [S0, 1] 

 '([S1, 0]) = 0 

d) '([S1, 1], a)  =  [ (S1, a),   (S1, a)] 

= [S1, 1] 

'([S1, 1], b)  =  [ (S1, b),   (S1, b)] 

= [S0, 1] 

 '([S1, 1]) = 1 

 

Q.23 Consider the following NFA with -transitions. Assume ‘p’ to be the initial state and ‘r’ as the 

final state. 

  a b c 

p  {p} {q} {r} 

q {p} {q} {r}  

r {q} {r}  {p} 

 

1) Compute the -closure of each state 

2) List all the strings of length three or less accepted by the automata 

3) Convert the automaton to its equivalent DFA 
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Solution: 

Let us first draw the TG for the given NFA with -transitions. 

 

 

1) -closure (p) = {p} 

-closure (q) = {p, q} 

-closure (r) = {p, q, r} 

 

2) All the strings of length three or less accepted by the automata 

= {c, ac, bb, bc, ca, cb, cc, abb, abc, bab, bac, aca, acb, acc, caa, cbb, ccc, cab, cba, cac, cca, cbc, 

ccb} 

 

3) The equivalent DFA can be obtained using a direct method as below. Each state has the primary 

as well as the secondary label. Secondary label consists of all the reachable states from the given 

state. We also have relabelled the states from 1 to 7, out of which 4, 5, 6 and 7 are final states.  

 

Let us also refer to the STF drawn and see whether it can be reduced. 
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 a b c 

1 1 2 4 

2 3 5 4 

3 3 5 4 

* 4 6 5 7 

* 5 6 5 7 

* 6 6 5 7 

* 7 6 5 7 

 

One can see that states 4, 5, 6 and 7 are equivalent. Hence, we can keep only 4 and remove the others by 

replacing all their occurrence by 4. Similarly, 2 and 3 are also equivalent; hence, 3 can be removed in lieu 

of state 2. Therefore, the reduced STF is, 

 a b c 

1 1 2 4 

2 2 3 4 

* 4 4 4 4 

 

The reduced state DFA is, 
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Q.24 Construct a DFA for the NFA, whose state transition function is given below. Assume ‘p’ to be 

the initial state and F = {q, r}. 

 0 1 

p {p, q}  

q r s 

f s  

s s s 

 

Solution: 

Initial state for the resultant DFA is also p and set of states Q’ = 2Q.  

Hence, Q’ = {p, q, r, s, pq, pr, ps, qr, qs, rs, pqr, pqs, prs, qrs, pqrs} 

 

For the given NFA, set of Final states is given as {q, r}. 

Hence, set of final states for the resultant DFA is, F’= {q, r, pq, pr, qr, qs, rs, pqr, pqs, prs, qrs, pqrs} 

 

When two or more symbols represent one state, transition for the resultant DFA can be obtained as 

follows, 

'(pq, 0) = [ (p, 0) ∪  (q, 0)] = [{p,q} ∪ {r}] = pqr  

Thus, the STF for the resultant DFA can be written as below, 
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Q \  0 1 

(1)          p pq   

(2)          *q r  s  

(3)          *r s   

(4)          s s  s  

(5)           *pq pqr s  

(6)            *pr pqs  

(7)            ps pqs s 

(8)            *qr rs s 

(9)           *qs rs s 

(10) *rs s s 

(11) *pqr pqrs s 

(12) *pqs pqrs s 

(13) *prs pqs s 

(14) *qrs rs s 

(15) *pqrs pqrs s 

 

We also have relabelled the states from (1) to (15). 

 

We can see that states, (11), (12) and (15) are equivalent. Also, (8), (9) and (14) are equivalent. If we 

remove states (12) and (15) and replace all occurrences of them by (11) we can get the reduced state 

DFA. Similarly, we can remove (9) and (14) and keep (8) instead. The reduced table would look like, 
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Q \  0 1 

(1)          p 5 - 

(2)          *q 3 4  

(3)          *r 4 - 

(4)          s 4  4 

(5)           *pq 11 4 

(6)            *pr 11 - 

(7)            ps 11 4 

(8)            *qr 10 4 

(10)            *rs 4 4 

(11) *pqr 11 4 

(13) *prs 11 4 

 

From the reduced state table we can see that states (5), (11) and (13) are equivalent. Hence, (11) and (13) 

can be removed and their occurrences can be replaced by (5) to obtain the reduced state DFA. 

Q \  0 1 

         1 5 - 

       *  2 3 4  

       *  3 4 - 

         4 4  4 

       *   5 5 4 

       *   6 5 - 
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           7 5 4 

       *    8 10 4 

       *   10 4 4 

 

The TG for the DFA can be drawn as, 

 

One can see that states 2, 3, 6, 7, 8 and 10 are no reachable from the initial state. Hence, they do not take 

part in the language recognition and hence can be removed being redundant. Also, state 4 though is 

reachable from the initial state does not involve in the acceptance and it does not lead to any final state. It 

is a trap state. Hence, needs to be removed as well. 

 

Removing all the unwanted states the final TG for the resultant DFA is,  

 

Q.25 Explain Moore and Mealy machines using suitable examples. How do we construct the equivalent 

Mealy machine for a given Moore machine? Give a suitable example. 

 

Solution: 

Refer to the section 2.11.1. 
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Q.26 Compare Mealy and Moore machines. Design a Mealy machine to replace each occurrence of 

sub-string ‘abb’ by ‘aba’, where  = {a, b}. 

 

Solution: 

Refer to the section 2.11 for Mealy and Moore machine comparison. 

 

We need to design a Mealy machine which will replace substring ‘abb’ by ‘aba’. 

 Let us assume that initial state of the machine is q0. As none of the substrings start with symbol 

‘b’, all such ‘b’s will be read and ignored by the machine in state q0. 

 Transition to state q1 is made after reading the input symbol ‘a’ where subsequent input will be 

checked. As we have to replace substring, only matching pattern should be replaced and other 

patterns should be kept intact as they are. 

 State q1 will check for the next input after previous input symbol ‘a’ that is read and will transit to 

state q2  if ‘b’ is the input symbol read. Otherwise no transition is made. 

 In state q2  it checks if input is ‘b’ (thus satisfying the required pattern ‘abb’) and transits to state 

q1 with replacing ‘b’ by ‘a’ and continue the process for each such pattern. 

 

State function and the machine function for the required mealy machine are shown below. 

 

Q\ a b 

q0 q1 q0 

q1 q1 q2 

q2 q1 q1 

 

The transition diagram for the mealy machine is as shown below, 

 

Q\ a b 

q0 a b 

q1 a b 

q2 a a 
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 Q.27 Design a Moore machine that changes all the vowels to ‘$’. 

 

Solution: 

This is a very simple sequence detector problem. Let  = {A, B, C, …, Z}. 

 

It is required that the vowels from any word, i.e., {A, E, I, O, U} needs to be replaced by ‘$’. 

 

Let us label all the remaining symbols except the vowels as ‘#’ for the simplicity. Using this convention 

Moore machine can be drawn as, 

 

 

As we can see from the TG that state p is associated with the output ‘#’ which indicates no change in the 

symbol if it is any other character than the vowels, while; the state q is associated with the output ‘$’ that 

changes the vowels to ‘$’. 

 

Q.28 Construct a DFA equivalent to the NFA: ({p, q, r, s}, {0, 1}, N, p, {q, s}), where N is as given 

in the following table: 

  

Q            0 1 

 p {q, r} {q} 

*q {r} {q, r} 

r {s} {p} 

*s - {p} 

 

Solution: 

Refer to the example 2.10 from the book. 
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Q.29 Write short notes on:  

(1) Deterministic finite automata 

(2)  Moore and Mealy machines 

(3) Moore’s algorithm for FSM equivalence 

(4) Relative powers of NFA and DFA 

(5) Limitations of FSM 

 

Solution: 

(1) Deterministic finite automata – Refer to the section 2.4. 

(2)  Moore and Mealy machines – Refer to the section 2.10. 

(3) Moore’s algorithm for FSM equivalence – Refer to the section 2.12.1. 

(4) Relative powers of NFA and DFA – Refer to the section 2.6. 

(5) Limitations of FSM – Refer to the section 2.14. 

 

Q.30 Give formal definitions for the following:  

(1) Deterministic finite automata 

(2)  NFA with -transitions 

(3) Moore machine 

(4) Acceptance of a string by FA 

 

Solution: 

(1) Deterministic finite automata – Refer to the section 2.4. 

(2)  NFA with -transitions – Refer to the section 2.7. 

(3) Moore machine – Refer to the section 2.10.1. 

(4) Acceptance of a string by FA – Refer to the section 2.3.3. 

 

Q.31 Translate the following Mealy machine into its equivalent Moore machine. 

 

 

 

 

 

 

Figure 2.56: Example Mealy machine 
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Solution: 

Let us draw state function and machine function for the given Mealy machine.  

 

Q \  0 1 

q1 q1 q2 

q2 q4 q4 

q3 q2 q3 

q4 q3 q1 

 

 : Q x   Q (State function)    : Q x    (Machine function) 

 

According to the rule of conversion, the resultant Moore machine consists of states,  

Q' = Q x  = { [ q1, 0], [ q1, 1], [ q2, 0], [ q2, 1], [ q3, 0], [ q3, 1], [ q4, 0], [ q4, 1] } 

 

Also ' and ' can be found as follows:  

a) '([q1, 0], 0)  = [ (q1, 0),   (q1, 0)] 

= [q1, 1] 

'([q1, 0], 1)  = [ (q1, 1),   (q1, 1)] 

= [q2, 0] 

 '([q1, 0]) = 0 

b) '([q1, 1], 0)  = [ (q1, 1),   (q1, 1)] 

= [q2, 0] 

'([q1, 1], 1)  = [ (q1, 1),   (q1, 1)] 

= [q2, 0] 

 '([q1, 1]) = 1 

c) '([q2, 0], 0)  = [ (q2, 0),   (q2, 0)] 

= [q4, 1] 

'([q2, 0], 1)  = [ (q2, 1),   (q2, 1)] 

= [q4, 1] 

 '([q2, 0]) = 0 

Q \  0 1 

q1 1 0 

q2 1 1 

q3 1 1 

q4 0 1 
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d) '([q2, 1], 0)  = [ (q2, 0),   (q2, 0)] 

= [q4, 1] 

'([q2, 1], 1)  = [ (q2, 1),   (q2, 1)] 

= [q4, 1] 

 '([q2, 1]) = 1 

e) '([q3, 0], 0)  = [ (q3, 0),   (q3, 0)] 

= [q2, 1] 

'([q3, 0], 1)  = [ (q3, 1),   (q3, 1)] 

= [q3, 1] 

 '([q3, 0]) = 0 

f) '([q3, 1], 0)  = [ (q3, 0),   (q3, 0)] 

= [q3, 1] 

'([q3, 1], 1)  = [ (q3, 1),   (q3, 1)] 

= [q3, 1] 

 '([q3, 1]) = 1 

g) '([q4, 0], 0)  = [ (q4, 0),   (q4, 0)] 

= [q3, 0] 

'([q4, 0], 1)  = [ (q4, 1),   (q4, 1)] 

= [q4, 1] 

 '([q4, 0]) = 0 

h) '([q4, 1], 0)  = [ (q4, 0),   (q4, 0)] 

= [q3, 0] 

'([q4, 1], 1)  = [ (q4, 1),   (q4, 1)] 

= [q4, 1] 

 '([q4, 1]) = 1 

 

Q.32 Convert the following NFA into NFA without -moves. 
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Figure 2.57: Example NFA with -moves 

 

Solution: 

Let's calculate - closure of the states. 

  -Closure (A) = {B, C} 

  -Closure (B) = {B} 

  -Closure (C) = {C} 

  -Closure (D) = {D} 

 

As D is the only final state for given NFA without -transitions, F’: set of final states for resultant NFA 

without -moves is given as, 

  F' = {D} 

 

Now let us find transition function ' for the resultant NFA. This can be obtained by using rule:  

 ' (q, a) = -closure ((^ (q, ), a)) 

 

' (A, 0) = -closure ((^ (A, ), 0)) 

  = -closure (((B, C), 0)) 

 = -closure ((B, 0) U (C, 0)) 

 = -closure ({D}, {c}) 

 = {C, D} 

' (A, 1) = -closure ((^ (A, ), 1)) 

 = -closure (((B, C), 0)) 

 = -closure ((B, 1) U (C, 1)) 

 = -closure ({B}, {D}) 

 = {B, D} 

' (B, 0) = -closure ((^ (B, ), 0)) 
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 = -closure ((B, 0)) 

 = -closure ({D}) 

 = {D} 

' (B, 1) = -closure ((^ (B, ), 1)) 

 = -closure ((B, 1)) 

 = -closure ({B}) 

 = {B} 

' (C, 0) = -closure ((^ (C, ), 0)) 

 = -closure ((C, 0)) 

 = -closure ({C}) 

 = {C} 

' (C,1) = -closure ((^ (C, ), 1)) 

 = -closure ((C, 1)) 

 = -closure ({D}) 

 = {D} 

' (D,0) = -closure ((^ (D, ), 0)) 

 = -closure ((D, 0)) 

 = -closure () 

 =  

' (D,1) = -closure ((^ (D, ), 1)) 

 = -closure ((D, 1)) 

 = -closure () 

 = 

From the above transitions, we can construct the transition table for the equivalent NFA without -moves 

as below,  

Q\∑ 0 1 

A {C,D} {B,D} 

B {D} {B} 

C {C} {D} 

D   
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The transition graph for the NFA without -moves is, 

 

 

 

 


